Veidlapa Nr. M-3 (8)
Studiju kursa apraksts

Sociālo pētījumu datu analīze

Studiju kursa pamatinformācija

Kursa kods
LUSDK_264
Zinātnes nozare
Matemātika; Varbūtību teorija un matemātiskā statistika
Kredītpunkti (ECTS)
3,00
Mērķauditorija
Sociālā labklājība un sociālais darbs
LKI
7. līmenis
Studiju veids un forma
Pilna laika; Nepilna laika

Studiju kursa īstenotājs

Kursa vadītājs
Struktūrvienības vadītājs
Struktūrvienība
Statistikas mācību laboratorija
Kontaktinformācija

Baložu iela 14, A korpuss, Rīga, +37167060897, statistika@rsu.lv, www.rsu.lv/statlab

Par studiju kursu

Mērķis

Sniegt zināšanas un prasmes statistiko metožu izmantošanā datu analīzē, kas nepieciešamas maģistra darba izstrādei un izpētes veikšanai savā specialitātē.

Priekšzināšanas

Pamatzināšanas matemātikā un informātikā.

Studiju rezultāti

Zināšanas

1.Pēc studiju kursa prasību izpildes studējošie būs apguvuši zināšanas, kas ļaus: * pārzināt statistisko terminoloģiju un izmantotās statistiskās metodes zinātniskās publikācijās; * pārzināt IBM SPSS Statstcis piedāvātas iespējas datu apstrādē; * pārzināt kritērijus, datu apstrādes metožu izmatošanai; * pareizi interpretēt iegūtos pētījumu rezultātus.

Prasmes

1.Studiju kursa apguves rezultātā studējošie pratīs: * ievadīt un rediģēt datus datorprogrammās Excel un IBM SPSS Statistics; * korekti sagatavot datus statistiskai apstrādei; * izvēlēties piemērotas datu apstrādes metodes; * statistiski apstrādāt pētījuma datus, izmantojot datorprogrammu IBM SPSS Statistics; * izveidot tabulas un diagrammas Excel un IBM SPSS Statistics programmās ar iegūtajiem rezultātiem; * korekti aprakstīt iegūtos pētījuma rezultātus.

Kompetences

1.Studiju kursa apguves rezultātā studējošie būs spējīgi argumentēti pieņemt lēmumu par statistiskas datu apstrādes metožu izmantošanu pētījuma mērķa sasniegšanai, un, izmantojot datorprogrammas Excel un IBM SPSS Statistics, praktiski pielietot apgūtās statistiskās metodes veicot izpēti.

Vērtēšana

Patstāvīgais darbs

Virsraksts
% no gala vērtējuma
Vērtējums
1.

Patstāvīgais darbs

-
-
1. Individuālais darbs ar literatūru – sagatavošanās katrai nodarbībai atbilstoši tematiskajam plānam. 2. Patstāvīga zinātniskās publikācijas analīze. 3. Patstāvīgais darbs – katram studentam tiks sagatavoti pētījuma datu faili (vai students var izmantot sava pētījuma datus) ar nodefinētiem pētījuma uzdevumiem. Studentam vajadzēs statistiski apstrādāt datus, lai sasniegtu nodefinētos uzdevumus, izmantojot atbilstošās aprakstošās statistikas metodes, slēdzienstatistikas un/vai analītiskās statistikas metodes, aprakstīt iegūtos rezultātus un prezentēt iegūtos rezultātus pēdējā nodarbībā. Lai izvērtētu studiju kursa kvalitāti kopumā, studentam jāaizpilda studiju kursa novērtēšanas anketa Studējošo portālā.

Pārbaudījums

Virsraksts
% no gala vērtējuma
Vērtējums
1.

Pārbaudījums

-
-
Līdzdalība praktiskajās nodarbībās. Par katru kavēto nodarbību – tēmas kopsavilkums izmantojot norādīto literatūru (min. 1 A4 lapa). Studiju kursa beigās ieskaite: 1. Patstāvīgā darba mutiska prezentācija – 50% 2. Eksāmens - daudzatbilžu tests ar teorētiskiem jautājumiem statistikā – 50%.

Studiju kursa tēmu plāns

PILNA LAIKA
1. daļa
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Statistikas loma pētījuma procesā. Datu veidi, mērskalas, datu ievade, datu sagatavošana Excel. Iepazīšanās ar IBM SPSS Statistics datorprogrammu.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Aprakstošās statistikas rādītāji, to aprēķins izmantojot Excel un IBM SPSS Statistics datorprogrammas.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Normālsadalījums un tā raksturojošie aprakstošās statistikas rādītāji.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Statistiskās hipotēzes, to veidi. Hipotēžu pārbaude. P vērtība.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Parametriskās datu apstrādes metodes kvantitatīvajiem datiem. Neatkarīgo un atkarīgo izlašu salīdzināšana.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Neparametriskās datu apstrādes metodes.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Kvalitatīvo datu apstrādes metodes.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Korelācijas analīze. Regresijas analīze (Lineārā regresija).
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Regresijas analīze (Binārā loģistiskā regresija).
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Zinātnisko publikāciju analīze.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Patstāvīgais darbs ar datiem IBM SPSS Statistics.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Patstāvīgā darba prezentācija.
Kopā kredītpunkti (ECTS):
3,00
Kontaktstundas:
24 ak. st.
Gala pārbaudījums:
Eksāmens (Rakstisks)
NEPILNA LAIKA
1. daļa
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Statistikas loma pētījuma procesā. Datu veidi, mērskalas, datu ievade, datu sagatavošana Excel. Iepazīšanās ar IBM SPSS Statistics datorprogrammu.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Aprakstošās statistikas rādītāji, to aprēķins izmantojot Excel un IBM SPSS Statistics datorprogrammas.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Normālsadalījums un tā raksturojošie aprakstošās statistikas rādītāji.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Statistiskās hipotēzes, to veidi. Hipotēžu pārbaude. P vērtība.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Parametriskās datu apstrādes metodes kvantitatīvajiem datiem. Neatkarīgo un atkarīgo izlašu salīdzināšana.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Neparametriskās datu apstrādes metodes.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Kvalitatīvo datu apstrādes metodes.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Korelācijas analīze. Regresijas analīze (Lineārā regresija).
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Regresijas analīze (Binārā loģistiskā regresija).
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Zinātnisko publikāciju analīze.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Patstāvīgais darbs ar datiem IBM SPSS Statistics.
  1. Nodarbība/Seminārs

Modalitāte
Norises vieta
Kontaktstundas
Klātiene
Datorklase
2

Tēmas

Patstāvīgā darba prezentācija.
Kopā kredītpunkti (ECTS):
3,00
Kontaktstundas:
24 ak. st.
Gala pārbaudījums:
Eksāmens (Rakstisks)

Bibliogrāfija

Obligātā literatūra

1.

Peat, J. & Barton, B. Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal. 2nd edition. John Wiley & Sons, 2014.

2.

Field, A. Discovering Statistics using IBM SPSS Statistics. 2018.

Papildu literatūra

1.

Teibe, U. Bioloģiskā statistika. Rīga: LU Akadēmiskais apgāds. 2007, p 155.