Sociālo pētījumu datu analīze
Studiju kursa īstenotājs
Baložu iela 14, A korpuss, Rīga, +37167060897, statistika@rsu.lv, www.rsu.lv/statlab
Par studiju kursu
Mērķis
Priekšzināšanas
Studiju rezultāti
Zināšanas
1.Pēc studiju kursa prasību izpildes studējošie būs apguvuši zināšanas, kas ļaus: * pārzināt statistisko terminoloģiju un izmantotās statistiskās metodes zinātniskās publikācijās; * pārzināt IBM SPSS Statstcis piedāvātas iespējas datu apstrādē; * pārzināt kritērijus, datu apstrādes metožu izmatošanai; * pareizi interpretēt iegūtos pētījumu rezultātus.
Prasmes
1.Studiju kursa apguves rezultātā studējošie pratīs: * ievadīt un rediģēt datus datorprogrammās Excel un IBM SPSS Statistics; * korekti sagatavot datus statistiskai apstrādei; * izvēlēties piemērotas datu apstrādes metodes; * statistiski apstrādāt pētījuma datus, izmantojot datorprogrammu IBM SPSS Statistics; * izveidot tabulas un diagrammas Excel un IBM SPSS Statistics programmās ar iegūtajiem rezultātiem; * korekti aprakstīt iegūtos pētījuma rezultātus.
Kompetences
1.Studiju kursa apguves rezultātā studējošie būs spējīgi argumentēti pieņemt lēmumu par statistiskas datu apstrādes metožu izmantošanu pētījuma mērķa sasniegšanai, un, izmantojot datorprogrammas Excel un IBM SPSS Statistics, praktiski pielietot apgūtās statistiskās metodes veicot izpēti.
Vērtēšana
Patstāvīgais darbs
|
Virsraksts
|
% no gala vērtējuma
|
Vērtējums
|
|---|---|---|
|
1.
Patstāvīgais darbs |
-
|
-
|
|
1. Individuālais darbs ar literatūru – sagatavošanās katrai nodarbībai atbilstoši tematiskajam plānam.
2. Patstāvīga zinātniskās publikācijas analīze.
3. Patstāvīgais darbs – katram studentam tiks sagatavoti pētījuma datu faili (vai students var izmantot sava pētījuma datus) ar nodefinētiem pētījuma uzdevumiem. Studentam vajadzēs statistiski apstrādāt datus, lai sasniegtu nodefinētos uzdevumus, izmantojot atbilstošās aprakstošās statistikas metodes, slēdzienstatistikas un/vai analītiskās statistikas metodes, aprakstīt iegūtos rezultātus un prezentēt iegūtos rezultātus pēdējā nodarbībā.
Lai izvērtētu studiju kursa kvalitāti kopumā, studentam jāaizpilda studiju kursa novērtēšanas anketa Studējošo portālā.
|
||
Pārbaudījums
|
Virsraksts
|
% no gala vērtējuma
|
Vērtējums
|
|---|---|---|
|
1.
Pārbaudījums |
-
|
-
|
|
Līdzdalība praktiskajās nodarbībās. Par katru kavēto nodarbību – tēmas kopsavilkums izmantojot norādīto literatūru (min. 1 A4 lapa).
Studiju kursa beigās ieskaite:
1. Patstāvīgā darba mutiska prezentācija – 50%
2. Eksāmens - daudzatbilžu tests ar teorētiskiem jautājumiem statistikā – 50%.
|
||
Studiju kursa tēmu plāns
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Statistikas loma pētījuma procesā.
Datu veidi, mērskalas, datu ievade, datu sagatavošana Excel.
Iepazīšanās ar IBM SPSS Statistics datorprogrammu.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Aprakstošās statistikas rādītāji, to aprēķins izmantojot Excel un IBM SPSS Statistics datorprogrammas.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Normālsadalījums un tā raksturojošie aprakstošās statistikas rādītāji.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Statistiskās hipotēzes, to veidi.
Hipotēžu pārbaude. P vērtība.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Parametriskās datu apstrādes metodes kvantitatīvajiem datiem.
Neatkarīgo un atkarīgo izlašu salīdzināšana.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Neparametriskās datu apstrādes metodes.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Kvalitatīvo datu apstrādes metodes.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Korelācijas analīze. Regresijas analīze (Lineārā regresija).
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Regresijas analīze (Binārā loģistiskā regresija).
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Zinātnisko publikāciju analīze.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Patstāvīgais darbs ar datiem IBM SPSS Statistics.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Patstāvīgā darba prezentācija.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Statistikas loma pētījuma procesā.
Datu veidi, mērskalas, datu ievade, datu sagatavošana Excel.
Iepazīšanās ar IBM SPSS Statistics datorprogrammu.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Aprakstošās statistikas rādītāji, to aprēķins izmantojot Excel un IBM SPSS Statistics datorprogrammas.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Normālsadalījums un tā raksturojošie aprakstošās statistikas rādītāji.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Statistiskās hipotēzes, to veidi.
Hipotēžu pārbaude. P vērtība.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Parametriskās datu apstrādes metodes kvantitatīvajiem datiem.
Neatkarīgo un atkarīgo izlašu salīdzināšana.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Neparametriskās datu apstrādes metodes.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Kvalitatīvo datu apstrādes metodes.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Korelācijas analīze. Regresijas analīze (Lineārā regresija).
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Regresijas analīze (Binārā loģistiskā regresija).
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Zinātnisko publikāciju analīze.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Patstāvīgais darbs ar datiem IBM SPSS Statistics.
|
-
Nodarbība/Seminārs
|
Modalitāte
|
Norises vieta
|
Kontaktstundas
|
|---|---|---|
|
Klātiene
|
Datorklase
|
2
|
Tēmas
|
Patstāvīgā darba prezentācija.
|
Bibliogrāfija
Obligātā literatūra
Peat, J. & Barton, B. Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal. 2nd edition. John Wiley & Sons, 2014.
Field, A. Discovering Statistics using IBM SPSS Statistics. 2018.
Papildu literatūra
Teibe, U. Bioloģiskā statistika. Rīga: LU Akadēmiskais apgāds. 2007, p 155.