Basics of Artificial Intelligence and Machine Learning
Study Course Implementer
RSU Department of Social Sciences, Kuldīgas street 9c, szf@rsu.lv
About Study Course
Objective
Preliminary Knowledge
Learning Outcomes
Knowledge
1.- key algorithms in supervised and unsupervised learning, including regression, classification, clustering, and ensemble methods; - basic understanding of model evaluation metrics and interpreting model results; - practical knowledge of open-source AI/ML tools and libraries.
Skills
1.- performing exploratory and visual data analysis and basic data preprocessing techniques; - building and evaluating machine learning models; - deploying basic models.
Competences
1.- interpreting model outputs and metrics to make data-driven business decisions; - integrating AI/ML models business workflows, aligning technological capabilities with organizational goals; - address ethical considerations, such as bias and fairness, when applying AI/ML in business environments.
Assessment
Individual work
|
Title
|
% from total grade
|
Grade
|
|---|---|---|
|
1.
Individual work |
-
|
-
|
|
The assignments combining theoretical questions and practical exercises.
|
||
Examination
|
Title
|
% from total grade
|
Grade
|
|---|---|---|
|
1.
Examination |
-
|
-
|
|
Short independent assignments completed during the course will be evaluated. The assignments combine theoretical questions and practical exercises. In the final class, students will defend their solutions, demonstrating their understanding and practical application of key concepts.
|
||
Study Course Theme Plan
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Introduction to AI, ML, and Data-Driven Decision Making
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Exploratory and Visual Data Analysis for Business Insights
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Introduction to Statistics and Data Preprocessing
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Feature Engineering and Feature Selection
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Predicting Outcomes with Linear Regression
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Binary Classification and Customer Segmentation with Logistic Regression
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Decision Trees
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Ensemble Learning: Random Forests for Improved Decision-Making
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
k-Nearest Neighbors (k-NN) and Clustering
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Principal Component Analysis (PCA) for Reducing Data Complexity
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Boosting Methods (XGBoost)
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Comparing Gradient Boosting Methods for Optimal Results
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Forecasting Trends with Time Series Analysis
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Introduction to Model Deployment and Business Applications
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Automating Model Building with AutoML
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Efficient Data Handling for Big Data
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Model Monitoring for Ensuring Consistent Results
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Meta-Learning and Advanced AutoML Techniques
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Ethics, Bias, and Fairness in Decision-Making with AI
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Evaluation and Course Wrap-Up
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Introduction to AI, ML, and Data-Driven Decision Making
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Exploratory and Visual Data Analysis for Business Insights
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Introduction to Statistics and Data Preprocessing
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Feature Engineering and Feature Selection
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Predicting Outcomes with Linear Regression
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Binary Classification and Customer Segmentation with Logistic Regression
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Decision Trees
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Ensemble Learning: Random Forests for Improved Decision-Making
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
k-Nearest Neighbors (k-NN) and Clustering
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Principal Component Analysis (PCA) for Reducing Data Complexity
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Boosting Methods (XGBoost)
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Comparing Gradient Boosting Methods for Optimal Results
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Forecasting Trends with Time Series Analysis
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Introduction to Model Deployment and Business Applications
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Automating Model Building with AutoML
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Efficient Data Handling for Big Data
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Model Monitoring for Ensuring Consistent Results
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Meta-Learning and Advanced AutoML Techniques
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Ethics, Bias, and Fairness in Decision-Making with AI
|
-
Class/Seminar
|
Modality
|
Location
|
Contact hours
|
|---|---|---|
|
On site
|
Auditorium
|
2
|
Topics
|
Evaluation and Course Wrap-Up
|
Bibliography
Required Reading
Géron, A. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow". 3rd ed., 2022.Suitable for English stream
Additional Reading
Theobald, O. "Machine Learning for Absolute Beginners: A Plain English Introduction"Suitable for English stream
Provost, F., & Fawcett, T. "Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking"Suitable for English stream
Knaflic, C. N. "Storytelling with Data"Suitable for English stream
Chen, T., & Guestrin, C.XGBoost: A Scalable Tree Boosting System. KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785 - 794(2016)
Breck E., Cai S., Nielsen E., Salib M. & Sculley D., The ML test score: A rubric for ML production readiness and technical debt reduction. 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 2017, pp. 1123-1132.
Barocas S., Hardt M., Narayanan A. "Fairness and Machine Learning: Limitations and Opportunities", 2023.